
Art Created from a Code
A critical discussion on the fundamental nature of
computational art and possible ways to approach,

understand and describe it.

Benjamin Fry, Genome Valence. Visualization of the genetic code.

Marie Polakova
BA Digital Screen Arts

University College for Creative Arts
2008

“All things in their fundamental nature are not namable or explicable. They
cannot be adequately expressed in any form of language.”

 (Ashvaghosha,1st century CE)

2

Contents
4 Introduction

6 Chapter 1 [new paradigm]

6 1.1

9 1.2

12 Chapter 2[in the beginning was the word]

25 Chapter 3 [processes that simulate and decide]

25 3.1

31 3.2 Few words about computer programming

36 Chapter 4 [art created out of code]

44 Conclusion

45 Bibliography

3

Introduction
The first chapter of this dissertation “New Paradigm” outlines the new paradigm

which emerged with the development of computer technology.

The second chapter “In the Beginning Was the Word” discuss the historical

context of software. It is focused on the ancient religious and magical teachings

where language is consider to be the tool, the material and the media of

Creation. It sketches interesting similarities between the ancient knowledge and

discoveries of science. It emphasises the parallels with computer programming.

The third chapter “Processes that simulate and decide” discusses the software

art in more detail, and on a perhaps less philosophical basis than the previous

two chapters. The second part of this chapter describes the process of computer

programming and illustrates it with examples.

The fourth chapter “Art created out of Code” outlines the results of research I

have undertaken in order to create a categorization of sub-disciplines of software

art. Case studies are used to illustrate the research.

The conclusion provides the summary of the issues discussed in the dissertation.

The discussion of my dissertation is based on and inspired by the works of

various authors, listed in the bibliography section. The most influential are

perhaps:

Florian Cramer -

A course director of the Media Design M.A. programme at Piet Zwart Institute. He

has a background in comparative literature and art history combined with

practical experience in computer programming, Unix computing, software and

copyleft culture, experimental arts, poetics and aesthetics. In his book Words

Made Flash and other shorter essays, he discusses the importance of code in

software art paradigm, and claims that the computer code is an elemental

4

component of any digitally produced and reproduced art work. He considers

software to be a cultural practice and relates its roots to literature and magical

and mystical practices.

John Maeda -

A programmer, designer, artist and professor at MIT Media Lab. His work has

been recognized and rewarded by numerous international awards. He is

committed to blurring the borders between art and technology, promoting

computer programming as a powerful tool for artistic creation. According to him

even the programming itself can be redesigned and become accessible for

artistically rather then mathematically minded people. In his own words:

“A major flaw in programming methods is the vast chasm that separates the

program’s cryptic codes and its graphic output. There is no greater need for

visual design than rethinking and redesigning the programming itself.”(Maeda

2000 : 406)

He discusses these issues in various theoretical works he has written.

Cassey Reas and Benjamin Fry -

Former students of John Maeda. Currently they are both renowned artists,

programmers and educators. During their stay at Media Lab MIT they started to

develop ‘Processing’, programming language aimed at being easily usable for

artists and designers, and to teach computer programming within an artistic

context. In their book, Processing, among the explanation of the actual

programming language, they discuss the theme of computer programming within

the art and design paradigm.

Fritjof Capra -

Ph.D., physicist and systems theorist, is a founding director of the Center for

Ecoliteracy in Berkeley, California and beside his scientific research papers, he

has written books about the parallels of Eastern mysticism and modern science

and he is an important person within the system theory research.

5

http://www.ecoliteracy.org/
http://www.ecoliteracy.org/

Chapter 1
[new paradigm]

1.1
“True digital forms are ephemeral- non existent in the physical realm. To truly
appreciate them we must entertain the eye for the invisible-to see into the
expansive electrical conscious of the computer. Our ability to comprehend its
multidimensional thinking patterns will require intense inquiry into the very
nature of computation.
The common perception of the computer as an object with screen, keyboard,
and mouse […] must defer to the computer’s rightful identity as pure
conceptual mass.”
(Maeda, 2000: IV)

More than fifty years after computer art was born, it is still discussed in analogy

(and in contradiction to) non digital art forms. Its terminology is derived from non-

digital art practices. Such as terms computer graphics, computer animation,

computer music, where only the addition of the word “computer” suggest that

something else than traditional-non digital graphics, animation or music is

considered. And we would rarely see computer artworks being compared to other

computer artworks, let alone computer artwork being discussed as a realm in its

own right. Why is it so difficult to grasp and define the paradigm of digitally

produced art?

Most commonly, the digital - and therefore software art would be approached

from two points of view. The first focuses on the “output” i.e. that which is

perceivable by the viewer. The most common way of displaying digital art being

the (computer) screen, therefore it is often discussed as part of “[new] media art”

and related to video art and even film i.e. to other works commonly displayed on

screens. Categorisation would be based on the media and methods of

distribution, for example Net Art, computer graphics, computer music and so on,

all of which are focused on how and in which medium the work is displayed,

rather than on the material and processes which compose them.

6

As Florian Cramer puts it

“While software, i.e. algorithmic programming code, is inevitably at work in all
art that is digitally produced and reproduced, it has a long history of being
overlooked as artistic material and as a factor in the concept and aesthetics of
a work.”
(Cramer& Gabriel,2001:1)

In contrast, the second, rather technological approach, focuses mostly on the

material – on the code. The “output” is not considered important and in some

cases can be ignored altogether and the code itself is considered to be the

artwork.

Whilst either of these approaches may be considered appropriate within their

own point of view, they are incomplete when software art is considered in a

holistic manner. Software art is neither a technology nor a previously known

artform. It is a new paradigm, or at least a part of the new paradigm that will be

discussed later in this chapter. Cassey Reas and Benjamin Fry describe it so:

“Software requires its own terminology and discourse and should not be
evaluated in relation to prior media such as film, photography, and painting.
History shows that technologies such as oil paint, cameras, and film have
changed artistic practice and discourse, and while we do not claim that new
technologies improve art, we do feel they enable different forms of
communication and expression.”

 (Reas & Fry, 2007 :1)

The following points define some trains of thought which should, perhaps, be

considered when discussing digitally produced and reproduced art.

1. Computational artwork is a continuous, inseparable process.

Within the digital realm, nothing simply just “is”. Digitally produced and

reproduced artwork is a part of an ongoing process, a constant stream of

communication between the various layers of code, electrical impulses and

physical mass. S. Snibbe in his essay entitled “The emptiness of code”

describes it as follows:

“It is our consciousness that creates artificial categories from interdependent
continuum of existence. Within this framework, computation is understood as
an interdependent chain of cause and effect, with no original or primary cause.
No part of the continuum from programmer to program, processor to display,

7

and display to viewer can be removed without breaking the computational
chain.[…] Computational artwork exists only as a continuation of the
programmer’s thoughts through the computational medium and into the mind of
the viewer. There is no way to remove or separate these components.” (Snibbe
Scott in Maeda, 2004 : 228)
The concept of existence as a continuous interdependent process has been

accepted by (some parts of) Western science for less than a century but it has

been present in religious and mystical teachings for millennia. For instance,

Buddhism is based on this concept and its teachings explain the principles with

great depth of understanding.

Therefore in this aspect, the full understanding of the computational art requires

us to accept these principles, whether the understanding is based on system

theory or Buddhism.

2 Software is a cultural practice and a written, literary medium

Digitally produced and reproduced artwork is made out of code. The code is a

written, literary medium. “If “literature” can be defined as something that is

made up by letters, the program code, software protocols and file formats of

computer networks constitute a literature whose underlying alphabet is zeros

and ones.” (Cramer&Gabriel, 2001:2) Software is not only algorithms or

collections of mathematical formulas. In fact computers can not understand

mathematics unless the formulae is written in some suitable programming

language i.e. translated into the ‘code’ understandable by the computer; this is

discussed in chapter 3.2 .

“But literature is not only what is written, but all cultural practices it involves -

such as oral narration and tradition, poetic performance, cultural

politics…”(Cramer :122) On this basis, software can also be considered

literature – because it is written and it is a part of a larger cultural practice.

From, for example, commonly used words, such as ‘to google’ or ‘to browse’

where the phrase illustrates a human activity which is born out of the software

use; to formation of political - philosophical movements such as Free Software,

8

where the central thought of the group is based on the software and the use

and the distribution of it.

Due to its elementary structure, which will be discussed in Chapter 2, software

can be seen to relate to magical, mystical and religious teachings, where the

concept of a word –symbol forming matter has been present for millennia.

3 The ways of perception of computational art do not differ from
perception of any other art form

Even if in its other aspects computational art relates to its formation in a

manner different from other art disciplines, from the “end” 1 user point of view

digital art is perceived as a visual, audio or even tactile experience, similarly to

any other artwork. In this aspect, the methods used in (any other) art discourse

and critique can be applied to software art as well, and there is no reason to

perceive digitally produced and reproduced artwork as “unique” due to the

process of its creation.

1.2

Looking at the software art and its problematic theoretical discourse can make us

aware of wider phenomena. The 20th century engendered what Vilem Flusser

called a “change of paradigms”. In his 1991 speech delivered in Prague, he

further explained:

“The division of history of the West into antiquity, the Middle Ages, and the
modernity is questionable, but nevertheless not arbitrary. In this case, the issue
was a change of paradigms, involving changes in living, feeling, and thinking,
changes obvious not only to us, at our historical distance, but also to those
affected by them.” (Flusser, 2002: 85)

9

As the Middle Ages transformed into modernity the Aristotelean and Biblical

heavenly order fell to pieces. The novel order of Rene Descartes’s philosophy

and Newtonian physics emerged. As Fritjof Capra states:

“ The birth of modern science was preceded and accompanied by a
development of philosophical thought which led to an extreme formulation of
the spirit/ matter dualism. […] The philosophy of Descartes was not only
important for the development of classical physics, but also had a tremendous
influence on the general Western way of thinking up to the present day.”
(Capra, 1975 : 21)

In the 20th Century’s shift from modernity to post-modernity, the previous order

also fell apart. “… a single universal world in which the same mathematically

formulatable laws are valid everywhere has proven to be temporary” (Flusser,

2002: 89). According to Flusser, the post-modern projection of the world looks

approximately like this:

“We are forced to split up the things and processes of the world into three
orders of magnitude. In the medium order of magnitude, which is measurable in
our measures, that is, in centimeters and seconds, the Newtonian laws are still
valid. In the big order of magnitude, that is, the one measurable in light–years,
the Einsteinian rules are valid. In the small one, which is measured in
micromicrons and nanoseconds, the rules of quantum mechanics are valid. In
each of these three worlds, we have to think differently, try to imagine
differently, and act differently.
And yet we cannot separate the three worlds…”(Flusser, 2002 : 89)

Approaches new to Western culture, such as system theory, have emerged,

focusing on ‘the pattern which connect’ as Gregory Bateson calls it, rather than

on definitions of separate parts. In system theory; which is applied in various

disciplines from neuroscience, sociology and psychology to computer science,

the emphasis is shifted from parts to the organisation (system) of the parts. And

the interactions of the parts are not understood as static and constant but rather

as dynamic processes.

“The world thus appears as a complicated tissue of events, in which
connections of different kinds alternate or overlap or combine and thereby
determine the texture of the whole.”(Heisenberg , 1963 : 96)

10

If the pattern of history repeats itself, which we might expect, the new ways of

understanding first established in the field of science will be eventually adopted

as general understandings of the whole culture, which will obviously form the

approaches of art-theoretical discourse as well.

1
When perceiving software as a continuous process there is obviously not a
beginning or an end. I’m using the term “end” for the sake of simplicity.

11

Chapter 2
[in the beginning was the word]

The history of code

1:1 In the beginning was the Word, and the Word was
with God, and the Word was God. [. . .]
1:14 And the Word was made flesh, and dwelt among
us[…]
(John 1:1,1:14)

Without paying attention to the theological explanation of the above text, we may

understand it, simply, as a description of a transformational process whereby a

non-material substance (“the word”) is made physical (“the flesh”). The non-

visual substance therefore becomes visually perceptible.

The description of such a transformation can be found in religious and/or magical

systems of many, if not all, cultures. Teachings, such as John’s Gospel quoted

above would in general have many layers of meaning, and can also be

approached on different levels of understanding, varying from meditative

contemplation to mathematical analysis and combinations of the above.

What is “the Word”?

A written word is a sequence of symbols (characters) organized in a particular

order, which holds a meaning to those who understand the system of its

organization. Without this understanding, the symbols remain graphical

elements, having hardly other than aesthetical import. Yet, human language,

even in its spoken form, is of a symbolic nature. In order to understand it, one

needs to be able to assign the right connotations with the words (i.e. symbols)

they just perceive. However, the spoken word is essentially a sound and it has

another – a phonic level of meaning, which is comprehensible (as long it is within

their hearing range) even for those are not able to “decode” its other layers of

meaning. For example, for those who do not understand that particular language.

12

Sound is a vibration, kinetic energy, a waveform. The knowledge that sound can

directly affect matter is well explained by science. Already in the 18th Century,

the physician and musician Friedrich Chladni observed that when a metal plate

covered with sand or other similar substance was made to vibrate by running a

violin bow across it, a sound vibration arranged the sand into symmetrical

patterns. (Fig 2) This same phenomenon has been researched by Japanese

scientist Dr. Masaru Emoto in reacent years. Using high-speed photography he

discovered that crystals formed in frozen water have unique forms, which,

according to his research, can be affected by exposing the water to sound or

even to written words or concentrated thoughts (such as prayer) which might be

either vocalized or just meditated. (Fig 3, 4)

These discoveries might appear surprising within still commonly accepted

Western dualistic understanding, which places the “matter” and the “spirit”, the

“body” and the “mind” into separate, classifiable categories. However, the

concept of the thought, the word, the letter or the symbol being interdependently

linked with matter, and therefore being able to affect and manipulate it, is at the

core of religious, mystical and magical teachings of all cultures. In Budhism this

concept is extended even further and the matter is not only considered to be

formed by the “word” but to be the manifestation of the “word”.

“It was taught by the Buddha…the past, the future, physical space,…and
individuals are nothing but names, forms of thought, words of common usage,
merely superficial realities.” (Madhyamika Karika Vrtti quoted in Murti 1955:198)

13

Fig. 2 Chladni figures

14

Fig.3
Photograph from Dr. Emoto’s research. This water crystal was formed after a
sample of the water was exposed to the written word ‘ Courtesy’

15

Fig.4
Photograph from Dr. Emoto’s research.
Left : water exposed to the word ‘Angel’. Right: water exposed to the word
‘Devil’

Based on this concept, these teachings understand the process of “shaping the

letters so as to form reality” (Blumenthal, 1978:22-29) not in a metaphorical

sense, but as a genuine instruction, which when followed correctly will perform a

certain task. According to Florian Cramer: “Magic therefore is, at its core, a

technology, serving the rational end of achieving an effect, and being judged by

its efficiency. ” (Cramer, 2005:15)

16

The magical statements and the computer code have the same purpose. They

are tools to manipulate “the reality”. They are not literature in a sense of a poem

or a story, with metaphorical and metonymical qualities. The words here serve as

signs representing elements (materials and commands alike) of multi-layered,

interdependent processes. The execution can be achieved only when certain

conditions are met.

In both cases, the cause is the manipulation of “the reality”, from influencing

already existing elements to the creation of new, previously non-existant ones.

“The technical principle of magic, controlling matter through manipulation of

symbols, is the technical principle of computer software as well.” (Cramer,

2005:15). From the moment when the process of execution is set in motion (by

turning the computer ON, for example) the words of the programming language

are closely bounded with matter.

“Through writing software, computer programmers describe structures that
define “processes.” These structures are translated into code that is executed
by a machine and the processes are carried out by actively engaging the
electronic matter within the computer.” (Reas, 2003)

 The words are not anymore dependent on the one who wrote them. “They are

real, having existence outside the human mind.” It may be argued that those

words are only commands for the computer hardware. But, simply speaking,

computer hardware without being programmed is just a piece of material, unable

to perform any task. Moreover, computer codes do not mean much without being

executed by the hardware which they had to program in order to execute

themselves.

To further describe the parallel between computers (and computation) and

ancient religious, mystical and magical teachings, the following part of this

chapter is focused on Kabbalah - Jewish mysticism. According to Kabbalah the

Universe “is built essentially on the prime elements of numbers and letters,

because the letters of God’s language reflected in human language are nothing

but concentration of His creative energy.”(Scholem, 1971 : 337). The teaching of

17

Kabbalah exists for over two thousand years and in the same way as other

religious teachings, it has been originally passed as an oral tradition. Later,

probably in 8th – 10th century it started to be recorded in written form.

Perhaps the most important text of the Kabbalah teaching is the Sefer Yetzirah –

The Book of Formation (spelling and translation sometimes vary, other most

often encountered is Sefer Yesira translated as “The Book of Creation”) The

origin of the text is a topic of heated disputes among historians and so far it

remains unknown. The text of Sefer Yesirah essentially describes the formal

instructions – an algorithm for the creation of the world through letters.

 “According to Sefer Yesira, God's "speech" was not talking in the sense of
someone speaking, but rather a manipulation of the letters of the Hebrew
alphabet. These letters, Sefer Yesira teaches, are not merely linguistic
symbols. They are real, having existence outside the human mind. They are
made of a special spiritual substance and, hence, could be formed, weighed,
shaped, etc. by God. Creation, then, was the process of shaping the letters so
as to form reality.” (Blumenthal, 1978 : 22-29)

The example of Sefer Yetzirah was chosen here, because the descriptions it

gives are formal algorithm - the same as the computer programming code. One

paragraph, for example, states:

 “From two letters, or forms He composed two dwellings; from three, six; from
four, twenty-four; from five, one hundred and twenty; from six, seven hundred
and twenty; from seven, five thousand and forty; and from thence their
numbers increase in a manner beyond counting; and are incomprehensible.”
(Sefer Yetzira, IV-4)

What is being described here is nothing else than the mathematical law of

permutation, which essentially explains how many possible combinations certain

amount of elements can have.

“From two letters, or forms He composed two dwellings” can be written as

mathematical formulae: 2! = 2 *1 = 2 and means that two elements allow two

permutations,{1,2}and {2,1} namely. “from three, six” or 3!= 3*2*1 = 6 than signify

that three elements can have already six permutations ({1,2,3},{1,3,2}, {2,1,3},

{2,3,1},{3,1,2}and {3,2,1}) and so on exactly as described by ancient text of Sefer

18

Yetzirah. The very same law is used widely in computation, just as the other

algorithms described within the book.

What is discussed here, among other issues, is a concept of language being

within itself its own instructions and ‘material’; the medium and the message

alike. Execution of its instructions by itself can transform the language into forms

which are not anymore lingual. These concepts would be well known to anyone

familiar with computing. For example, one of the essential discoveries of

computer science is, that the computer can treat its own instructions as a form of

data, which allowed the concept known today as computer programming. As

described by Cramer and Gabriel:

“By running code on itself, this code gets constantly transformed into higher-
level, human-readable alphabets of alphanumeric letters, graphic pixels and
other signifiers. These signifiers flow forth and back from one aggregation and
format to another. Computer programs are written in a highly elaborate syntax
of multiple, mutually interdependent layers of code. This writing does not only
rely on computer systems as transport media, but actively manipulates them
when it is machine instructions. “
(Cramer & Gabriel,2001:2)

Within Kabbalah, another very contemporary idea is that of a semi-autonomous

artificially created but in a sense living being - the ‘Golem’.

“ The word ‘golem’ appears only once in the Bible (Ps. 139: 16), and from it
originated the Talmudic usage of the term – something unformed and
imperfect. In philosophic usage it is matter without form. Adam is called
“golem”, meaning body without soul…” (Encyclopedia Judaica vol.7 : 736).

Even though the word was mentioned in earlier sources, it is Sefer Yetzirah

which provides instructions (although encrypted) on how to create such a being.

There are different explanations of these instructions and various legends of

Rabbis who succeeded in creating the Golem - the legend of Rabi Loew’s Golem

of Prague being probably the most well- known one today. (Fig 5) Essentially the

Golem has a physical body, in most legends created out of clay. This remains

nothing but a piece of matter until it had been passed the “Shem ha-Meforash ,

the fully interpreted and expressed and differentiated name of God” (Scholem

19

1971 : 339)- the code which makes unliving matter alive. Different versions of the

legend vary in descriptions of the details - sometimes the letters are inscribed on

the piece of parchment, which is placed in Golem’s mouth or they are written on

his forehead. The ‘code’ would usually consist of the letters aleph, mem, tav,

which is emet and means ’truth’, when the aleph is erased you are left with mem

and tav, which is met, meaning ‘death’ and will render the Golem back to its non-

living state. (Fig. 6,7)

Whether the ancient Rabbis did or did not manage to create the ‘functional’

Golem by following the Sefer Yetzirah instructions can hardly be proved. But

when being perceived as a metaphor, we might observe striking parallels

between the non-living clay body of the Golem and computer hardware, and

between the ‘emet’ – ‘met’ letter permutations which sets the matter ‘alive’ and

the computer code. For example, Professor Gershom Scholem, Jewish

philosopher and historian coined the name “Golem of our Times” as a term for

the computer. The first computer constructed in Weizmann institute (Rehovot,

Israel) was according to his wish named Golem1. In his speech “The Golem of

Prague and the Golem of Rehovot” delivered at the Weizmann institute, on June

17, 1965, Professor Scholem describes six points to illustrate the parallels

between the two “Golems”. Two of them being particularly interesting within the

context of this dissertation:

"1. Have they a basic conception in common? I should say, yes. The old Golem
was based on a mystical combination of the twenty-two letters of the Hebrew
alphabet, which are the elements and the building stones of the world. The new
Golem is based on a simpler, and at the same time more intricate, system.
Instead of twenty-two elements, it knows only of two, the two numbers 0 and 1,
constituting the binary system of representation. Everything can be translated,
or transposed into these two basic signs, and what cannot be so expressed
cannot be fed as information into the Golem. I dare say the old Kabbalists
would have been glad to learn of this simplification of their own system.[…]
2. What makes the Golem work? In both cases it is energy. In the old Golem it
was the energy of speech, in the new one it is electronic energy."(Scholem,
1971 : 339)

The ancient legend seems to be more alive than we might think at first glance.

20

Fig 5. Mikolas Ales, 1897. Rabi Loew’s Golem.

21

Fig 6. ‘emet’ – truth

Fig 7. ‘met’ – death

The concept of the language as a tool and material of algorithmic manipulations

carries on through Western history. The Kabbalistic principles were adopted by

Christian scholars, and scientists, such as Ramon Lull who’s work Ars Magna

Sive Combinatoria (Fig 8) is considered to be an ancient precursor for Artificial

Intelligence, (according to Z. Neubauer). Or 17th century Czech teacher, scientist

and philosopher Jan Amos Comenius who used Kabbalistic computational

methods to structure his popular encyclopedia “Orbis Pictus”(Fig 9), which was

the first illustrated children’s school book in history and, according to Cramer, the

graphic user interface of computers used today is based on Comenius’ work.

Unlike my previous examples, in Lull and Commenius’ approaches the letter

combinations were understood “…as method of logical reasoning, generation

and classification of statements and knowledge.” (Cramer, 2005:41)The

computational language manipulations were also used in the classical rhetoric

and poetics among others.

22

Fig. 8
Ramon Lull’s Ars

Fig.9
Comenius’ encyclopaedia Orbis Pictus

23

Observing the same thought pattern, that of the word (letter, code, symbol) -

matter manipulation, being embedded within possibly all cultures and fields of

human knowledge, we might ask if the structure of knowledge is not simply

reflecting this basic principle, which is woven into the elementary structure of the

Universe, perhaps, being the essential principle of Nature and therefore of

human beings. What else is the genetic code than a set of instructions (an

algorithm) of how to form living bodies from non-living matter?

24

Chapter 3
[processes that simulate and decide]

3.1
In the 1960s when computer art was born, artists were closely cooperating with

scientists (and programmers). They could hardly access computers otherwise,

since the large mainframe computers of that time cost anything from $ 100 000 to

several million US dollars and only scientists had access to industrial research

laboratories and university computer centres, which owned such equipment. (Fig

.10) There was obviously no “ready made” software and the only way to realise

an artwork within the computer realm was to program it by your self, which at that

time was an even more tedious task than it is today, or to collaborate with

someone who would program it for you.

Fig.10
This image depicts part of ‘Johniac’, a computer constructed in 1954 by Rand
Corporation. It was valued at $470.000

25

With the invention of the microprocessor in the mid-seventies, computers

gradually became smaller, cheaper and more available. The user interface, in

other words, that which is between the computer and the user, has also changed.

Starting with the Xerox 8010 Star Information System in 1981, the Graphical

User Interface (GUI) became wide spread. While the other user interfaces, the

Text User Interface (TUI) and Command Line Interface (CLI) in particular,

required excessive knowledge of the operating system, as the commands have

to be typed, and therefore known, by the user. GUI allow users with minimal

formal training and knowledge to operate the computer. The commands for the

computer are ‘hidden’ behind graphical elements and can be manipulated by

simple mouse clicks. The design of GUIs has been inspired by known ‘non

digital’ environments, such as office desktops.

“To most of us, paper is more of a state of mind than any object-it is a place
outside our minds to think and reflect. It is unfortunate that the display
technology of the computer we use has been designed around the flat,
rectangular metaphor of machine-cut paper, instead of the unflat,
unrectangular, and infinitely multidimensional space of pure computation.”
(Maeda, 2000:145)

Even though the GUI is undoubtedly one of the essential factors causing the

wide spread of computers, it has also a drawback. The true nature of

computation remains hidden behind the desktop, paper and pen metaphors.

“Word processors are based on typewriters and graphics programs mimic
paper, pencils and brushes. However, what program is inspired by a flowing
stream?”
(John Simon Jr. in Maeda 2004:46)

The design of the software environment is nearly always based on the tools and

environments from the ‘real’ world. Word processors mimic typewriters. Graphics

software reminds us of the drawing desk of the pre-computer era, with the use of

familiar tools such as brush and pencil, and video editing programs are based on

the film editing suite. There is a reason for this, as for example, graphics software

is intended to help its user to produce images which are perceived by the viewer

as graphics, whether created digitally or not. But such a design of the user

26

interface tends to conceal, and even make inaccessible the ‘material’ - the

essentially different nature of digitally produced artwork. Following our example

of graphic software, its design doesn’t guide the artist to realize that by using the

tool called ‘ink’ he is not, at all, doing anything as drawing with ink on paper (or

canvas, as the working surface of graphic software is often called). The

seemingly two dimensional ink mark is in fact a manipulation of multi-dimensional

computational space.

Behind the visible brush and ink are layers of text- the computer code which, very

simply speaking, in its ‘elementary’ machine code phase manipulates the electric

circuits of the computer , which then, among other tasks, direct the beam of

electrons hitting the chemical surface, covering the glass plate of the monitor,

and so to form the visible ‘pixels’- that has the visual reference to the ink known

from the ‘real’ world. What a fascinating realm lies behind the blob of digital ink!

The computer software ‘Time Paint’ created by John Maeda emhasises rather

than hides this nature of digital ‘painting’.(Fig.11)

27

Fig. 11
‘Time Paint’
“We usually think of a stroke of digital ink as nothing more than a mark left in
space. When its true identity is revealed as a path not only through space but
also through time, its sculptural, space-time qualities can be revealed, as
visualized in this project…”(Maeda, 2000:99)

Preprogrammed software is shaping the way we use it. It shapes what we can

and cannot do with it. The limitations are given by the technology - by the

programmer who created the software; while in programming the limitations are

within your mind. It’s mostly your understanding which limits and permits your

action. This is not to say that they are not any limitations within the programming

languages. Each of them is the most suitable for different purpose and has its

unique qualities. “A programming language gives you the power to express some

ideas, while limiting your abilities to express others.” (Cuba, cited in Reas &

Fry :1)

The tools and materials used for the realization of the artwork are important.

Through them the matter of an artist’s thoughts is shaped! It is no different within

the computational art paradigm. The decision of which programming language to

use has the same importance for the artist-programmer, as the decision to use

oil or aquarell has for the painter. It can be said that each programming language

28

produces its unique kind of aesthetic, sometime distinctive enough to be

recognizable. Similarly, the distinctive look of oil painting can be hardly confused

with charcoal drawing. Also, artists working with code would have their unique

personal style, like any other field of art. (see examples provided in chapter 4)

Again, the knowledge, the understanding of the artist-programmer is the

limitation which permits or stops him to use the particular language. In some

cases artists-programmers would even develop their own programming

languages to fulfill their needs. For example, graphical programming

environments such as Pure Data or MaxMSP-Jitter (Fig 12), have been

developed for artistic usage. Within these environments, the user is programming

via manipulating graphical elements, and these programming languages are

therefore more accessible for those unfamiliar with ‘code writing’. Another

example is Processing (Fig.13), textual programming language and environment

developed by Benjamin Fry and Cassey Reas as an efficient and accessible

language for artists and designers and as a tool to teach the fundamentals of

computer programming within the artistic context.

Fig.13

Processing programming environment.

29

Fig.12
Programming environment of Max/MSP Jitter. Programs call ‘patches’ and each
little box signifies an element of the program. Connection between these
elements is provided by ‘patchcords’.

The limits given by the technology lay far behind the limits set by the design of

pre-programmed software. Therefore creation with the code, from writing their

own programs to developing unique programming languages, allow the artists-

programmers working within the digital environment to gain freedom which they

can hardly have otherwise. In the words of Jered Tarbell, artist and programmer:

“With software, anything that can be imagined can be built. Software has a
mysterious,undefined border. Programming is truly a process of creating
something from nothing. “
(Tarbell, interviewed in Reas & Fry:158)

30

3.2
Few words about computer programming

 “The ability to “read” a medium means you can access materials and tools
created by others. The ability to “write” in a medium means you can generate
materials and tools for others. You must have both to be literate. In print
writing, the tools you generate are rhetorical; they demonstrate and convince.
In computer writing, the tools you generate are processes; they simulate and
decide.”
Making processes that simulate and decide requires programming.
(Kay, cited in Reas & Fry :3)

Computer programming is a process of interpreting human thoughts and

emotions into instructions that are executable by the computer. When we say or

write something, most of the words would trigger visual, or other sensory,

imagination in the mind of the person who receives the message, but we would

never be in control of what this imagination looks like, we would never actually

know. ‘Communication’ with programming languages follows a similar structure,

but the ‘imagination’ happened in the computer where, unlike in another person’s

mind, it is accessible to others. John Maeda describes the process of computer

programming as “… to unerringly describe the structure of a machine as a

sequence of textual codes, which when brought to life in the mind of the

computer performs a specific processing task.” (Maeda 2000 : 406)

Due to the amazingly complex tasks computers can perform, we might be

tempted to think of them as intelligent, nearly human machines. (Un?)fortunately

they are not. Underpinning the computer are the electric circuits, which in their

simplest form are either “on” or “off”. Imagine that you are trying to explain to

someone the way to the next town. Imagine doing it, being permitted to use only

two words “yes” and “no”. In some sense, that is, what computer programming is

all about.

Computers can really only “understand” its machine language, code-zeros and

ones, which signify “off” and “on” of its electric circuits, but these days probably

nobody is writing programs in the machine codes. Usually, the instructions will be

written in some of the higher level programming languages. Those are then, by

31

another program, translated “down” to the machine language. Details of this

process vary, depending on the type of the programming language used.

The process of programming would usually start with an understanding of the

problem – i.e. understanding the task which the particular program needs to

perform, and defining what the solution must do. Later the programmer would

think of an algorithm – the general solution for the problem, try to analyze it and

verify if the solution really solves the problem. After that the algorithm would be

translated into a programming language, executed and tested. (according to Dale

Nell & Weems Chip, 2005; 3) Fig 14. illustrates the process of programming, and

it is, as artist - programmer and MIT professor John Maeda describes, an

“Example of the evolution of an image representing infinity, from a sketch on

paper, to an equally rough mathematical model, to an approximated

programmatic translation, and finally directly into the computer as a tunable

form.”(Maeda 2000: 29)

Fig.14
John Maeda. Image representing infinity.

32

To offer the reader unfamiliar with computer programming better insight, the

following paragraph explains the process of computer programming with an even

simpler example.

Let’s say that we would like to draw an image representing a dark blue square

with a thin white line stretching from its top left to the bottom right corner.

As a next step we might think of the process of how this image is drawn, so we

can instruct others. We translate the instructions into, so we might ask someone

who doesn’t know English to follow them. We also want this image to be drawn

by the computer and we have chosen to write the instructions in Processing, the

programming language discussed in Part 3.1, which is very easy to use for

graphical output.

We would specify the first step in English as:
1. Draw a square of a size 5 x 5 cm.

In Czech as:
1. Nakreslete čtverec o velikosti 5 x 5 cm.

In Processing as:
//1.
size(200,200);

The second step would be in English:
2. Fill it with dark blue colour.

In Czech:
2. Vybarvěte ho tmavě modrou barvou.

In Processing:
//2.
background(#0AABFF);

And the third, final step is in English:
3. Draw a white, approximately 1mm thin line from left top corner to the right

bottom corner.

In Czech as:
3. Nakreslete bílou čáru, přibližně 1mm silnou, z levého horního do pravého
dolního rohu.

In Processing as:
 //3.
stroke(0);

33

strokeWeight(2);
line(0,0,200,200);

The following images show the result of following the instructions by two different

people and one computer.

Following the instructions in English result in:

Following the Czech instructions led to this image:

And the computer program resulted in this image:

34

Principally the instructions can be passed, received and executed only if both the

writer and the reader understand the particular language. Otherwise they remain

only sequences of meaningless characters. Just as a person who doesn’t know

Czech wouldn’t be able to draw the image following the Czech instructions, the

computer cannot ‘understand’ English or Czech, but it can ‘draw’ the image

following the instructions written in Processing.

Computer programming is often associated with mathematics. Although

mathematics is an essential part of the programming code, a computer does not

‘understand’ it! Mathematical formulae have to be translated into some

programming language in order to be understandable by the computer.

This is not to say that computer programming is entirely analogous to the

communication in human languages. Programming languages have far more

restricted vocabulary and more rigid syntactic and semantic order than any

natural language, programming still remains ‘unnatural’ and difficult to

comprehend for many individuals. It confronts the artist with other challenges

than the use of other artistic tools and materials. It is more similar to learning a

language (even a non- natural one) than mastering the use of tools. However

“the foremost challenge in operating such a powerful tool is the same as with the

simplest tool: there must always be a clear initial concept that can guide the

process to a relevant outcome.” (Maeda 2000 : 32)

35

Chapter 4
[art created from a code]

This chapter is providing an overview of different types of computational art

works.

There is not yet any established classification of the types of software art. To

create such a system of classification is complicated and my efforts to do so are,

of course, tentative. Therefore I want to simply describe different types of

software art, without creating overly defined categories, provided with case

studies to illustrate the described artforms.

 [formal code art]
The code, not the output of the code is the artwork.

In this aspect formal code art relates closely to other written artforms, such as

poetry, and to the conceptual art where the notation can not be distinguished

from the artwork. Florian Cramer when discussing the Composition 1961 No.I,

January I created by contemporary composer and former Fluxus artist La Monte

Young: “Draw a straight line and follow it.” (Young in Cramer &Gabriel, 2001:2)

states: “This piece can be called a seminal piece of software art because its

instruction is formal.”(Cramer &Gabriel, 2001:2).

The following example, perhaps more related to prose than poetry is Joshua

Samberg’s ‘Self SDK’. The term SDK stands for Self Development Kit and

describes, simply speaking, documentation and samples which software

engineers need in order to write, build, test, and deploy applications for certain

software packages.

Joshua Samberg used C++, a common programming language, to create a

functional program, which in itself is a new kind of self-portrait. In the code, he

intentionally uses semantically meaningful class, variable, and method names

and extensive in-line comments so as to be at least marginally understandable to

anyone who understands English, even if they do not have the technical

knowledge to fully understand the code.(according to Samberg, 2006)

36

Similarly to other works of art, code art, such as Self SDK, can also reflect very

personal feelings of the artist. In Joshua Samberg’s own words:

“Self SDK is an attempt to gain understanding and control of my often difficult

and confusing existence by modeling myself and my life in a computer program.

As an experienced programmer, I feel a lot of power, efficacy, and safety in the

world that lies inside the computer. In real life, on the other hand, I feel hopeless

and overwhelmed in the face of the most basic, everyday tasks and occurrences.

By constructing a model of myself inside the computer, I have tried to utilize my

comfort, experience, and skill with computer programming to explore,

understand, and ultimately transform myself.“ (Samberg, 2006)

(Fig 15,16)

Fig.15
Joshua Samberg, Self SDK program written in C++ programming language.

37

Fig.16
Joshua Samberg, Self SDK. Output of the previously pictured program.

38

[generative software art]
The artwork is created by the use of a generative system, which sets a few basic

rules to define the initial conditions on which the generative process is based. It

is self-contained and operates with some degree of autonomy.

It offers a powerful and fascinating tool for the artists as it allows them, in a

sense, to create their own ‘worlds’ which function according to the rules chosen

by the artists.

The idea of automating language, cognitive reasoning and art existed already in

the 17th century. For example in 1674, Quirinus Kuhlmann, follower of the earlier

mentioned Ramon Lull, published in a book ‘Epistolae Duae’ a discussion about

automatically generated art and its cognitive limitations. (according to Cramer

2005 : 105).

A later example of an already functional self-operating generative algorithm is

cellular Automaton (CA) first considered by John von Neumann in the 1940s, and

then becoming well known in the 1970s after the ‘Game of Life’, devised by the

British mathematician J.H.Conway, was published.

Game of life “is run by placing a number of filled cells on a two-dimensional grid.

Each generation then switches cells on or off depending on the state of the cells

that surround it.”(Worlfram MathWorld) Even though the rules defining the

behaviour of the cells are very simple, they produce amazingly complex results.

(Fig 17).

39

Fig.17 Celullar Automaton ‘Game of life’

“ The rules are defined as follows. All eight of the cells surrounding the
current one are checked to see if they are on or not. Any cells that are on are
counted, and this count is then used to determine what will happen to the
current cell.

1. Death: if the count is less than 2 or greater than 3, the current cell is
switched off.

2. Survival: if (a) the count is exactly 2, or (b) the count is exactly 3 and the
current cell is on, the current cell is left unchanged.

3. Birth: if the current cell is off and the count is exactly 3, the current cell is
switched on. “ (Worlfram MathWorld)

Many art and scientific works have been inspired by Conway’s work. 'The simple

rules which produce complex results’ is a significant feature of self- generated

algorithms.

40

[augmented [software] reality]

If software has to be executed by the computer in order to be defined as software

is a topic of ongoing discussions. In my opinion, programming code executed by

human can clearly be defined as a software art.

The ‘.walk’, entitled “no software but walkware”(runme.org, 2003), a

psychogeographical game played in various locations of the world, can serve as

a brilliant example of such artwork.

“A generative psychogeographical walk only has a direction but no
destination. There are no good or bad results, only the results you come back
with. That's why failure is impossible. On the other hand it must always fail
because the city never fully complies with the demands of the algorithm. But it
doesn't matter. What is important is to practise this art of being in between.”
(Crystalpunk, 2006):

.walk can have simple rules, such as in the following example:

“programming .walk for dummies
 // Classic.walk

 Repeat

 {

 1 st street left
 2 nd street right
 2 nd street left

 }”
 (Crystalpunk, 2006)

This example shows simple, ‘classic’ psychogeoraphical algorithm. We may have

a look at other, more complex instructions:

“/ Fibonacci .walk
 // 1, 1, 2, 3, 5, 8, 13, 21, 34, ...

 Z = 1
 Z(x) = 0

41

 Repeat

 {
 Z Left or right {random}

 Z(y) = Z
 Z = Z + Z(x)
 Z(x) = Z(y)

 }
”(Crystalpunk, 2006)

Different from the previous example, here the choice of direction is not strictly

set, but depends on the decision of the individual following the algorithm. The

code also computes its own next turn according to the Fibonacci number series,

which is infinite. “…following this .walk applet to its logical conclusions must soon

becomes surrealistic, if not downright absurd.”(Crystalpunk, 2006)

To follow similar instructions obviously requires some mathematical and

programming knowledge, the terms ‘software’ and ‘programming’ are not used

only as metaphor.

 [software net-art]
If software art is defined as “art of which the material is

software.”(Cramer&Gabriel,2001:3), definition of net-art as software-art becomes

problematic.

The common use of the term ‘Net-Art’ refers to the media by which the work is

distributed, not to the material from which it is created. As defined by pioneers of

net.art Natalie Bookchin and Alexei Shulgin: “net.art […] describes an art and

communications activity on the internet.”(Bookchin & Shulgin, 1999)

HTML (Hypertext Markup Language), extensively used on the World Wide Web

is a markup language, not a programming language. HTML documents are not

software! To make web pages interactive, programming code can be embedded

in HTML. But for example, applets (programs) written in Java programming

language can be ‘called’ by the HTML document, but the code is then, same as

42

other Java programs, executed by JVM (java virtual machine), utility which is

installed on the particular computer.

Another possible approach would be to consider software artworks which use the

structure and content of the Internet (WWW) as a topic, to be the ‘software net-

art’. It can perhaps also include artworks interested in the social behaviour on the

internet. Various internet visualising projects would then belong to this category.

43

Conclusion

Software art is a unique artform. Even though it is novel its conceptual roots

reach far back to the history of humanity and its very nature is a manifestation of

the fundamental laws of the Universe.

It is unfortunate that such a powerful creative tool, as the computer, is treated in

the way that its full potential can not be revealed. As John Maeda states:

“Imagine if the computer we touch everyday were viewable through some
special glasses that reveal this alternative reality. We would see something
like a shimmering material of pure electric thought, perhaps incomprehensible
but at least several universes away from the dreary click, keypress, and drag
that we associate with modern computing.”(Maeda, 2000 : 59)

Actually, we would not need the special glasses but new patterns of

understanding in order to comprehend the fascinating realm of shimmering

electric thought! Necessity of the new ways of apprehension is not limited to the

subject of computational art, but like anytime when the ‘change of paradigm’

happened, these need to emerge in all fields of human knowledge.

We may look forward to the moment when the general way of understanding,

currently still influenced by Cartesian philosophy will change, and when looking

at computational artwork, we will be able to perceive more than images moving

on a flat computer screen.

44

 Bibliography
Abelson, Harold, Gerald Sussman and Julie Sussman. 1985, Structure and
Interpretation of Computer Programs. MIT Press, Cambridge, MA.

Ars Electronica Archive, 2003,Code The Language of Our Time, catalogue 2003
http://www.aec.at/en/archives/festival_archive/festival_catalogs/festival_catalog.a
sp?iProjectID=12281

Ashvaghosha, The Awaking of Faith, translation D.T Suzuki,1900,Open Court,
Chicago

Bateson Gregory, 1979, Mind and Nature; A necessary Unity, Hampton Press,
Cresskill, NJ published 2002

Blumenthal David R., 1978, Creator and Computer in Understanding Jewish
Mysticism ,p 22-29, New York: Ktav Publishing. Currently
http://www.js.emory.edu/BLUMENTHAL/CreatorandComputer.html

Bookchin Natalie and Shulgin Alexei , 1999, Introduction to net.art (1994-1999),
http://www.easylife.org/netart/

Capra Fritjof, 1975, The Tao of Physics, Willwood House, UK

Capra Fritjof, 2002, The Hidden Connections, published by flamingo, London,
2003

Cramer Florian, 2001, Digital Code and Literary Text, http://www.netzliteratur.net/
cramer/digital_code_and_literary_text.html

Cramer Florian and Gabriel Ulrike, 2001, Software Art and writing
http://plaintext.cc:70/essays/software_art_and_writing

Camer Florian, 2002, Concepts, Notation, Software, Art,
http://cramer.plaintext.cc:70/essays/concept_notations_software_art

Cramer Florian , 2003, Exe.cut[up]able statements:The Insistence of Code,
http://plaintext.cc:70/essays/executable_statements

Cramer Florian, 2005, Words Made Flash
http://pzwart.wdka.hro.nl/mdr/research/fcramer/wordsmadeflesh/

Crystalpunk, 2006
http://www.socialfiction.org/index.php?search=walk

45

http://pzwart.wdka.hro.nl/mdr/research/fcramer/wordsmadeflesh/
http://cramer.plaintext.cc:70/essays/concept_notations_software_art
http://plaintext.cc:70/essays/software_art_and_writing
http://www.netzliteratur.net/cramer/digital_code_and_literary_text.html
http://www.netzliteratur.net/cramer/digital_code_and_literary_text.html
http://www.easylife.org/netart/
http://www.js.emory.edu/BLUMENTHAL/CreatorandComputer.html
http://www.aec.at/en/archives/festival_archive/festival_catalogs/festival_catalog.asp?iProjectID=12281
http://www.aec.at/en/archives/festival_archive/festival_catalogs/festival_catalog.asp?iProjectID=12281

Dale Nell & Weems Chip, 2005, Programming and Problem Solving with C++, 4th

edition, Jones and Bartlett Publishers International

Emoto Masaru, 2005, The Hidden Messages in Water, Simon & Schuster

Encyclopedia Judaica, 1971, Keter Publishing House Ltd., Jerusalem

Flusser Vilem, 1973 – 1991, Writings, edited by Shtrohl Andreas, 2002,
University of Minnesota Press,MN

Heisenberg W., 1963, Physics and Philosophy, Allen&Unwin, London

Howe Denis, 1993, Free On-line Dictionary of Computing
http://foldoc.org/

Jewish Virtual Library
http://www.jewishvirtuallibrary.org/index.html

Maeda John, 2000, Maeda & Media, Thames&Hudson Ltd, London

Maeda John, 2004, Creative code, Thames&Hudson Ltd, London

Murti T.R.V., !955, The Central Philosophy of Buddhism , Allen&Unwin, London

Reas Cassey, 2003, Programming Media, in Ars Electronica Archive 2003
http://www.aec.at/en/archives/festival_archive/festival_catalogs/festival_catalog.a
sp?iProjectID=12281

Reas Casey & Fry Ben, 2007, Processing : a programming handbook for visual
designers and artists , MIT Press

runme.org - say it with software art! , 2003
http://www.runme.org/project/+dot-walk/

Samberg Joshua, 2006, Self SDK,
http://iceberg901.com/selfsdk.html

Sepher Yetzirah, translation by W.W.Wescott, 1887
http://www.sacred-texts.com/jud/yetzirah.htm

Scholem Gershom, 1971, The Mesianic Idea in Judaism and Other Essays on
Jewish Spirituality, Schocken Books Inc.

Stocker Gerfried, 2003, Code - The language of Our Time, in Ars Electronica
Archive 2003

46

http://iceberg901.com/selfsdk.html
http://www.runme.org/project/+dot-walk/
http://www.jewishvirtuallibrary.org/index.html

http://www.aec.at/en/archives/festival_archive/festival_catalogs/festival_catalog.a
sp?iProjectID=12281

Wolfram Mathworld
http://mathworld.wolfram.com/

47

http://mathworld.wolfram.com/
http://www.aec.at/en/archives/festival_archive/festival_catalogs/festival_catalog.asp?iProjectID=12281
http://www.aec.at/en/archives/festival_archive/festival_catalogs/festival_catalog.asp?iProjectID=12281

